
Summer School Lasaris 2021

System of Systems (SoS) Research

Bruno Rossi

brossi@mail.muni.cz
Department of Computer Systems and Communications,
Lasaris (Lab of Software Architectures and Information Systems)
Masaryk University, Brno

www.lasaris.cz

2/19

My Research Focus / Interests (in one slide)
Smart Grids Big Data Research Smart Grids Testing Processes Software Evolution (Sofware Quality,

Technical Debt)

3/19

My Research Focus / Interests (in one slide)
Smart Grids Big Data Research Smart Grids Testing Processes Software Evolution (Sofware Quality,

Technical Debt)

Part of the CERIT-SC Big Data project EF16_013/0001802 (ended) - main results achieved: anomaly detection for smart
grids datasets, data analysis approaches for smart grids problems, big data analysis platform for smart grids power
consumption analysis and the benchmarking of the platform (IEEE TIII, FedCSIS, IoTBDS, SEAA)

4/19

My Research Focus / Interests (in one slide)
Smart Grids Big Data Research Smart Grids Testing Processes Software Evolution (Sofware Quality,

Technical Debt)

Part of the C4e Project, 16_019/0000822 - reviewed different testing process frameworks to be applied to SGs, different
aspects of simulations (co-simulations) by means of several frameworks that can be adopted, development of a platform,
SGTMP for SG testing, adaptation of Mosaik co-sim framework (SAC, SEAA, SMC, SCSP, FedCSIS, Applied Sciences,
Cyber-Physical Systems, Sustainable Computing)

5/19

My Research Focus / Interests (in one slide)
Smart Grids Big Data Research Smart Grids Testing Processes Software Evolution (Software Quality,

Technical Debt)

Mainly for C4e project. Evaluation of code quality of software projects with relation to Technical Debt and mining software
repositories – what is the impact of accumulating TD? Comparison of different ways to measure TD and software metrics
(SEAA,SAC,Scientific Programming, Journal of Software: Evolution and Process)

6/19

System of Systems (SoS)

The term “System of Systems” (SoS) has been used since the 1950s to describe systems that are
composed of independent constituent systems, which act jointly towards a common goal through the
synergism between them. Examples of SoS arise in areas such as power grid technology, transport,
production, and military

Nielsen, Claus Ballegaard, et al. "Systems of systems engineering: basic concepts, model-based techniques, and research directions." ACM Computing Surveys (CSUR) 48.2 (2015): 1-41.

Main Challenges:
+ Defining clear boundaries between components at design time (both technical and governance)
+ Ensuring several properties at runtime in terms of correctness, performance, etc…

Differences with traditional systems engineering:
+ stakeholders with competing interests and priorities
+ no centralised authority over all the systems
+ added complexity due to multiple system lifecycles
+ balancing testing, behaviour, and performance needs between the constituent systems and the SoS

An SoS is a system, some of whose elements are themselves designated as systems

7/19

SoS Definition

Operational Independence. Any system that is part of an SoS is independent and is able to operate even
if the SoS is disassembled.

Managerial Independence. Despite collaborating with the other members of the SoS, the individual
systems are self-governing and individually managed

Geographic Distribution. The parties collaborating in an SoS are distributed over a large geographic
extent

Evolutionary Development. An SoS’s existence and development are evolutionary in the sense that
objectives and functionality can be under constant change

Emergent Behaviour. Through the collaboration between the systems in an SoS synergism is reached in
which the system behaviour fulfils a purpose that cannot be achieved by, or attributed to, any of the
individual systems.

Nielsen, Claus Ballegaard, et al. "Systems of systems engineering: basic concepts, model-based techniques, and research directions." ACM Computing Surveys (CSUR) 48.2 (2015): 1-41.

8/19

Main SoS Areas & Issues

● Modelling
→ Static & dynamic representation of the SoS architecture
→ Generic model-based engineering languages lack constructs to represent SoS

● Simulations
→ Coupling models with simulations can represent both static and dynamic aspects of SoS
→ Garanteeing correctness of the simulation models
→ How to ensure that the deployed SoS will be indentical to the simulated one?
→ SoS simulations cannot be covering all the possible operational states
→ Simulations can cover different aspects (e.g. data exchange, cybersecurity)
→ Scalability of simulation platform (e.g., see HELICS https://helics.org)

● Chaos Engineering
→ How to test the emerging behavious in SoS

● Design of Experiments
→ Meaningful test scenarios for SoS

Neto, Valdemar Vicente Graciano, et al. "Model-based engineering & simulation of software-intensive systems-of-systems: experience report and lessons learned." Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings. 2018.

9/19

Architecture Description Languages (ADL) & SoS

● An Architectural Description Language (ADL) provides a description of an architecture, by providing a
model to check several properties of system under investigation

● However, in dealing with SoS, traditional ADLs miss some critical aspects
– Operational independence → Traditional ADLs based on components whose operation is totally

controlled by the system
– Managerial independence → Traditional ADLs based on components with management decisions

encoded in the system architecture at design-time
– Geographic distribution →Traditional ADLs support logically distributed components. They do not

support physical mobility, like local interactions among components physically moving near to each
other

– Evolutionary Development →Traditional ADLs based on concrete components known at design-time
and that may enter or leave the system at run-time under the control of the system itself

– Emergent Behaviour → Traditional system ADLs based on behaviors explicitly defined, not emergent
behaviors required in SoSs

Oquendo, Flavio. "Formally describing the software architecture of systems-of-systems with SosADL." 2016 11th system of systems engineering conference (SoSE). IEEE, 2016.

10/19

What are co-simulations?

“Co-simulation is defined as the coordinated execution of two or more simulation models
that differ in their representation as well as in their runtime environment”*

* Steinbrink C, Schlögl F, BabazadehD, Lehnhoff S, Rohjans S, Narayan A. Future perspectives of co-simulation in the smart grid domain. In: 2018 IEEE International Energy Conference (ENERGYCON) IEEE; 2018.

Common terminology

→ Emulation (integrated or co-simulated): emulated
component mimics the the real world hardware counterpart

→ Co-simulation: orchestrate simulations running by different
means

→ Real-time simulations: the real time expectation that the
simulator needs to fulfill to interact with external components
(hardware or software)

→ Hardware in the loop (HiL): used to develop complex real-
time embedded systems in which some components are real
hardware, whereas others are simulated

11/19

Results from our review of co-sim in SG area

HLA = High Level Architecture
FMI = Functional Mock-up Interface

Peter Mihal and Martin Schvarcbacher and Bruno Rossi and Tomáš Pitner. "Smart Grids Co-Simulations: Survey & Research Directions." arXiv preprint arXiv:2109.02349 (2021). Submitted to Elsevier SUSCOM Journal.

A1. Reliability and wide-area awarenes
A2. Consumer energy efficiency
A3. Distributed Energy Resources (DER)
A4. Grid energy storage
A5. Electric Transportation
A6. Advanced Metering Infrastructure
A7. Management of distribution grid
A8. Cybersecurity
A9. Network communications

12/19

Power consumption simulations with Mosaik

1. Why general co-simulation platforms might be an issue for SoS, e.g. with Mosaik no dynamically changing of topology is
possible, for example is not possible to simulate cyber attacks or failures that involve some nodes failing

2. We extended Mosaik with the disconnect method to remove edges from
the dataflow graph and the entity graph → A simple way to simulate node
failure
The topology builder module can track time of connection/ disconnection
We set the case that some PV units are set to failure to see how they will
affect the voltage monitoring at the end of the branches

Gryga, L., & Rossi, B. (2021). Co-simulation of Smart Grids: Dynamically Changing Topologies in Failure Scenarios. In COMPLEXIS2021..

13/19

Additional Collaborations

14/19

Research & Emerging ideas

● Collaboration with Ulrich Norbisrath, University of Tartu and Emilia Cioroaica, Fraunhofer IESE, Kaiserslautern
– Using VR-based systems to support autonomous systems runtime
– Showcasing how the ML algorithms perform when taking decisions

● Teaching benefits
● Failure identification benefits

● Collaboration with Stanislav Chren, Bacem Mbarek, Mouzhi Ge
– Blockchain for Smart Grids false data injection attacks, Petri Nets for Smart Grids operational

maangement

● Collaboration with José Miguel Blanco Sánchez
– Looking at temporal logic and semantic web / ontologies application to Smart Grids and the IoT domain

● Benefits and constraints running on limited resources devices

15/19

Upcoming Events

16/19

SRC at SAC2022

https://www.sigapp.org/sac/sac2022/submission_src.html

https://src.acm.org/
https://www.sigapp.org/sac/sac2022/

October 15, 2021 Submission deadline

Brno, April 25-29 2022

https://www.sigapp.org/sac/sac2022/submission_src.html
https://src.acm.org/
https://www.sigapp.org/sac/sac2022/

17/19

Critical Infrastructures (CI) Track at SAC2022

https://sites.google.com/view/sac-ci-2022/

October 15, 2021 Submission deadline
https://www.sigapp.org/sac/sac2022/submission.html

Brno, April 25-29 2022

https://sites.google.com/view/sac-ci-2022/
https://www.sigapp.org/sac/sac2022/submission.html

18/19

IoTBDS2022

http://iotbds.org

November 30, 2021 Submission deadline

Prague, April 22-24 2022

http://iotbds.org/

19/19

	Lecture 10: ESB and middleware
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

