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Task definition

* Design communication lines between major elements of
the power grid (substations)

Fiber optics added to selected power lines

Deploment cost vary

Some communication lines already deployed

Overall cost should be minimized
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Topology of a power grid

* Graph G = (N, E)
Nodes:
stations
* topo. points (deg. > 2)
sem. points (deg. > 1)
Edges:
power lines
existing comm. lines
* Weights based on:
line length
placement
current state
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Steiner (minimum) tree in graphs

* Inputs
- graph G=(N, E)
+ setof terminals S € V

- weights assigned to edges

* Steiner Tree = any tree, that spans S

* SMT =the ST of minimum total weight
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Steiner (minimum) tree in graphs
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* Steiner Minimum Tree - NP-hard problem 3\s @ o @
* Preprocessing — reduce number of nodes and edges 70 \ 7P
* Solving: @ 25.0 @ 3 G5.5
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Algorithms & heuristics

Distance Network Heuristic — based on Spanning tree

16.
fast execution, basic quality @ - @
Takahaski algorithm — based on Dijkstra algorithm @

fast solution, basic quality 1370
Incremental improvement (Zelikovsky algorithm) e @
start with fast solution 23.0 220

locate some beneficial nonterminals and add them to the solution
slower execution, higher quality

* [1] BEYER, Stephan; CHIMANI, Markus. Strong Steiner Tree Approximations in Practice. Journal of Experimental
Algorithmics (JEA), 2019, 24.1: 1-33.
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Steiner trees for communication lines planning

 Use-case = iterative use

* Incremental growth of the communication network
* solutions for various scenarios

 variable circumstances

* => need for fast algorithm

* Existing optics
* setting cost/weight to O

* we can utilize it to shorten runtime
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Our approach and hypotheses

* We expected DNH to be a good trade-off between
runtime and solution quality

* In real power grid networks, robust Zelikovsky
algorithm will not improve solution quality much

* DNH is simple approach and can be optimized to run
faster without quality loss
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Tuned DNH algorithm

1.0E+7

* Distance network computation
* Floyd-Warshall vs.

|2] = 500 2] =900 [Z] = 1300

Dijkstra algorithm ; -

DNH needs distances between pairs of terminals only
for |S| << |N]| outperforms Floyd-Warshall even in basic implementation

Can run in parallel
We can limit the searching depth (hopefully without quality loss)

* Minimum Spanning Tree
* Prim’s algorithm - faster than Kruskal’s
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Tuned DNH - limited search depth

* Longer paths (# edges) are usually more expensive

- — low probability for the final solution

Number of paths of given length in the final solution

* Riskl: Outlying terminals

- terminals not distributed evenly .
- outliers may not be connected
- Solution1: limit given by . I

— I!_- ------ =

number of terminals met

Path length (in nodes)
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Tuned DNH - limited search depth

 Risk2: Isolated clusters

 larger than ,terminals-met* limit
* the terminals only ,find“ other
of the same cluster

- Solution2: Force the Dijkstra

algorithm to “meet” existing optics

before ending
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Tuned DNH - shrinked optics subgraph

* Risk3: Existing optics edges are searched first

Solution3: Shrinked optics
1) Store the path to closest node with existing optics

2) Update the distance network i (0PT(z1) + OPT(z2) < Cd((z1, 22))) {

cd((z1, z2)) = OPT(z1) + OPT(z2)

}

* Eliminates the disconnections within the steiner tree while
reducing the runtime of the algorithm
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Tuned DNH - shrinked optics subgraph

Number of separated components

== Area 1 without shrinking == Area 2 without shrinking =esss s Area 1 with shrinking == == Area 2 with shrinking
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Number of terminals met before Dijkstra termination

13

30



M MASARYK ‘.. .
UNIVERSITY lasaris

Czech Republic

Algorithms comparison - solution quality
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Algorithms comparison - execution time
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