

Fast Steiner tree algorithms for Smart Grid communication infrastructure design

1

Miroslav Kadlec

Task definition

- Design communication lines between major elements of the power grid (substations)
 - Fiber optics added to selected power lines
 - Deploment cost vary
 - Some communication lines already deployed
 - Overall cost should be minimized

Topology of a power grid

- Graph G = (N, E)
 - Nodes:
 - stations
 - topo. points (deg. > 2)
 - sem. points (deg. > 1)
 - Edges:
 - power lines
 - existing comm. lines
 - Weights based on:
 - · line length
 - placement
 - current state

Steiner (minimum) tree in graphs

- <u>Inputs</u>
 - **<u>graph</u>** G=(N, E)
 - set of <u>terminals</u> $S \subseteq V$
 - weights assigned to edges
- **<u>Steiner Tree</u>** = any tree, that spans S
- SMT = the ST of minimum total weight

Steiner (minimum) tree in graphs

Algorithms & heuristics

- Steiner Minimum Tree NP-hard problem
- Preprocessing reduce number of nodes and edges
- Solving:
 - <u>Distance Network Heuristic</u> based on Spanning tree
 - · fast execution, basic quality
 - <u>Takahaski algorithm</u> based on Dijkstra algorithm fast solution, basic quality
 - · Incremental improvement (Zelikovsky algorithm)
 - start with fast solution
 - · locate some beneficial nonterminals and add them to the solution
 - · slower execution, higher quality
- [1] BEYER, Stephan; CHIMANI, Markus. Strong Steiner Tree Approximations in Practice. Journal of Experimental Algorithmics (JEA), 2019, 24.1: 1-33.

Steiner trees for communication lines planning

- <u>Use-case = iterative use</u>
 - incremental growth of the communication network
 - solutions for various scenarios
 - variable circumstances
 - => <u>need for fast algorithm</u>
- Existing optics
 - setting cost/weight to 0
 - we can utilize it to shorten runtime

Our approach and hypotheses

- We expected DNH to be a good trade-off between runtime and solution quality
 - In real power grid networks, robust Zelikovsky algorithm will not improve solution quality much
 - DNH is simple approach and can be optimized to run faster without quality loss

Tuned DNH algorithm

- Distance network computation
 - · Floyd-Warshall vs.
 - Dijkstra algorithm

- DNH needs distances between pairs of terminals only for |S| << |N| outperforms Floyd-Warshall even in basic implementation
- Can run in parallel
- We can limit the searching depth (hopefully without quality loss)
- Minimum Spanning Tree
 - Prim's algorithm faster than Kruskal's

Tuned DNH – limited search depth

- Longer paths (# edges) are usually more expensive
 - \rightarrow low probability for the final solution
- <u>Risk1: Outlying terminals</u>
 - terminals not distributed evenly
 - outliers may not be connected
 - <u>Solution1</u>: limit given by
 number of terminals met

Number of paths of given length in the final solution

Tuned DNH – limited search depth

- <u>Risk2: Isolated clusters</u>
 - larger than "terminals-met" limit
 - the terminals only "find" other of the same cluster
 - <u>Solution2</u>: Force the Dijkstra algorithm to "meet" existing optics before ending

Tuned DNH – shrinked optics subgraph

- <u>Risk3: Existing optics edges are searched first</u>
 - Solution3: Shrinked optics
 - 1) Store the path to closest node with existing optics
 - 2) Update the distance network

```
if (OPT(z1) + OPT(z2) < Cd((z1, z2))) {
    Cd((z1, z2)) = OPT(z1) + OPT(z2)
}</pre>
```

• Eliminates the disconnections within the steiner tree while reducing the runtime of the algorithm

Tuned DNH – shrinked optics subgraph

Number of separated components

Number of terminals met before Dijkstra termination

Algorithms comparison – solution quality

Algorithms comparison – execution time

