
Fast Steiner tree algorithms for
Smart Grid communication
infrastructure design

Miroslav Kadlec

1

Task definition

● Design communication lines between major elements of
the power grid (substations)

● Fiber optics added to selected power lines
● Deploment cost vary
● Some communication lines already deployed
● Overall cost should be minimized

2

Topology of a power grid
● Graph G = (N, E)

● Nodes:
● stations
● topo. points (deg. > 2)
● sem. points (deg. > 1)

● Edges:
● power lines
● existing comm. lines

● Weights based on:
● line length
● placement
● current state

3

Steiner (minimum) tree in graphs

● Inputs
● graph G=(N, E)
● set of terminals S V⊆
● weights assigned to edges

● Steiner Tree = any tree, that spans S

● SMT = the ST of minimum total weight

4

Steiner (minimum) tree in graphs

5

Algorithms & heuristics
● Steiner Minimum Tree - NP-hard problem
● Preprocessing – reduce number of nodes and edges
● Solving:

● Distance Network Heuristic – based on Spanning tree
● fast execution, basic quality

● Takahaski algorithm – based on Dijkstra algorithm
● fast solution, basic quality

● Incremental improvement (Zelikovsky algorithm)
● start with fast solution
● locate some beneficial nonterminals and add them to the solution
● slower execution, higher quality

● [1] BEYER, Stephan; CHIMANI, Markus. Strong Steiner Tree Approximations in Practice. Journal of Experimental
Algorithmics (JEA), 2019, 24.1: 1-33.

6

Steiner trees for communication lines planning

● Use-case = iterative use
● incremental growth of the communication network
● solutions for various scenarios
● variable circumstances
● => need for fast algorithm

● Existing optics
● setting cost/weight to 0
● we can utilize it to shorten runtime

7

Our approach and hypotheses

● We expected DNH to be a good trade-off between
runtime and solution quality

● In real power grid networks, robust Zelikovsky
algorithm will not improve solution quality much

● DNH is simple approach and can be optimized to run
faster without quality loss

8

Tuned DNH algorithm

● Distance network computation
● Floyd-Warshall vs.
● Dijkstra algorithm

● DNH needs distances between pairs of terminals only
– for |S| << |N| outperforms Floyd-Warshall even in basic implementation

● Can run in parallel
● We can limit the searching depth (hopefully without quality loss)

● Minimum Spanning Tree
● Prim’s algorithm - faster than Kruskal’s

9

Tuned DNH – limited search depth

● Longer paths (# edges) are usually more expensive
● → low probability for the final solution

● Risk1: Outlying terminals
● terminals not distributed evenly
● outliers may not be connected
● Solution1: limit given by

number of terminals met

10

Tuned DNH – limited search depth

● Risk2: Isolated clusters
● larger than „terminals-met“ limit
● the terminals only „find“ other

of the same cluster
● Solution2: Force the Dijkstra

algorithm to “meet” existing optics

before ending

11

Tuned DNH – shrinked optics subgraph

● Risk3: Existing optics edges are searched first
● Solution3: Shrinked optics

● 1) Store the path to closest node with existing optics
● 2) Update the distance network

● Eliminates the disconnections within the steiner tree while
reducing the runtime of the algorithm

12

Tuned DNH – shrinked optics subgraph

13

Algorithms comparison – solution quality

14

Algorithms comparison – execution time

15

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

