MUNI C4E

Blansko Summer School 2020

Overview of ongoing research

Bruno Rossi brossi@mail.muni.cz

Lasaris, Faculty of Informatics, Masaryk University

Aug 31, 2020

CyberPhysical Sytems (CPS)

- A cyber physical system (CPS) is a collection of computing devices communication with one another and interacting with the physical world via sensors and actuators in a feedback loop.
- A CPS is a generalization of an embedded system.
- Key differences of CPS compared to traditional systems:
 - Reactive computation: input and outputs impact on the physical world passing through the cyber world (e.g. sequences of commands that change the force applied to the throttle to have a specific acceleration)
 - **Concurrency**: is fundamental in CPS (e.g. swarm of robots exchanging information)
 - Feedback Control of the physical world: control systems interact with the physical world via sensors and influence the outcome with actuators.
 - Real time computation: modelling time delays, time-dependent coordination protocols, impact of correctness and performance

Safety -critical Cyber Physical Sytems (CPS)

- A safety-critical cyber physical system (CPS) is the one that is employed for safety-critical applications, that is where the safety of the system has higher priority over the design objectives such as performance and development costs.
- Ensuring that the system works correctly at design time is of paramount importance: the traditional approach of system design, development testing and validation might be surpassed in this area by formal modelling and validation.

C4e Research Programme

A multidisciplinary centre of Masaryk university that brings together expert academic departments to address complex cyberspace problems.

Involved experts collaborate and carry out multidisciplinary excellence research and development within the research programmes. Their research results immediately reflect in their educational activities.

The centre aims at practical application of research activities. To this end, we collaborate with a wide range of public and private sector partners.

Critical Information Infrastructures Protection, lead by Tomáš Pitner. (2) Formal verification of critical infrastructures (3) Recommendations for critical infrastructure realization
 Cybersecurity, lead by Pavel Čeleda. (2) Advance analysis of operational data (3) similarity management for big-data analytics
 Law, lead by Radim Polčák. (1) cybersecurity law (2) law of cyber-cifence (3) cybercrime law
 The Centre is managed by the director Roman Čermák.

С4е

(1) Simulation and predictive analysis of critical infrastructures

Subprogramme 3 Goals

Recommendations for critical infrastructure realization

- Goal: provide recommendations related to the implementation of critical infrastructures based on quality perspectives (security, safety, reliability, robustness, privacy, legal topics).
- Expected Research Results:
 - RR1. Models of critical infrastructures and related processes relevant for the resolution of critical situations in the field of cyber-security.
 - RR2. Key guidelines for the design, realization and control of critical cyber-physical systems.

Subprogramme 3 Team

Bruno Rossi, FI MU

Radek Ošlejšek, FI MU

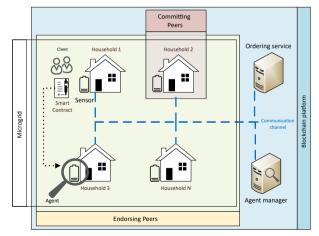
Renate Motschnig, Universität Wien

Gerald Quirchmayr, Universität Wien

Subprogramme 3 Results Recent Results

- Behavior analysis of cybersecurity training programs. Improve training programs of the protection of critical information infrastructures using techniques of process mining (RR1,RR2).
- Risk management for Smart Grids Infrastructure (RR2).
- Usage of co-simulations in the context of Smart Infrastructures (Smart Grids, specifically microgrids). modelling "what-if" scenarios deriving common scenarios related to changes of topologies of the distribution nodes (RR2).
- Visualization surveys for cyber exercises and software development models to take into account cybersecurity aspects (RR2).

Ex1. Recommendations for Smart Grid Security Risk Management

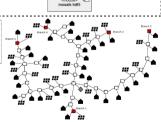

 Goal: Provide recommendations tailored for Smart Grids Security Management.
 We provided a tailored model for SG cybersecurity more specific than NIST Framework for Improving Critical Infrastructure Cybersecurity - taking activities from existing frameworks in the SG domain.

SRA tasks		Recommended activities
SRA 1	Defining the purpose and scope of risk assessment	 Proactive and automated tools
SRA 2	Conduct threat, vulnerability, and impact analysis	 Threat profiles and models
		 Security advisories
		 Vulnerability catalogues
		 Vulnerability scanning tools
		 Impact matrix
		 Impact assessment reports
SRA 3	Development of a risk model	 Probabilistic models
		 Attack tree models
		 Intrusion detection models
		 State estimation models
		 Risk taxonomy
SRA 4	Risk determination	 Risk matrix and risk scales
		 Graph-theoretic approaches
		 Stochastic approaches
		 System-theoretic approaches
SRA 5	Continuous monitoring and update of risk assessment	 Periodic risk assessment
SRA 6	Communication and documentation of risks	 Risk assessment reports
		 Risk registers

Table 3. Recommendations for security risk assessment (SRA).

Ex2. Blockchain SG - with Bacem, Stano

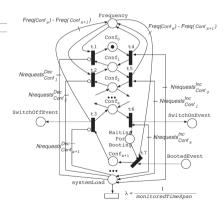
 Goal: Investigating the usage of Blockchain for Microgrids energy transactions between prosumers.



Ex3. Co-simulations in Smart Grids

Goal: Investigating the usage of co-simulations for what-if scenarios in Smart Grids. We simulate a **failure/attack**: five PV units are shut down **randomly** and **deterministically**

Results: the modified Mosaik platform can be used to simulate dynamically changing scenarios, based on changes to the topology of the network.


Ex4. Petri Nets usage in SG - with Bacem, Stano, Mouzhi

Goal: Provide an overview of the usage of Petri Nets in modelling Smart Grids.

4.3 Reliability

Reference	Year	Topic	PN Type	
Liu et al. [25]	2010	Fault identification and diagnostics	General	
Zeng et al. [50]	2011	Dependability analysis, substation attack modelling	GSPN	
Saki et al. [36]	2011	Failure diagnostics, monitoring	General	
Calderaro et al. [3]	2011	Failure identification and diagnostics	General	
Zeng et al. [51]	2012	Dependability analysis, substation attack modelling	GSPN	
Diekhake and Schnieder [10]	2013	Monitoring	Causal PN	
Wang et al. [42]	2014	Fault diagnostics	Directional weighted fuzzy PN	
Wang et al. [40]	2014	Dependability analysis	SPN	
Wang et al. [41]	2015	Fault diagnostics	General	
Ghasemieh et al. [14]	2015	Resilience and survivability analysis	Hybrid PN	
Chen et al. [6]	2015	Detection of nontechnical losses, out- ages, illegal and fault events	Fuzzy PN	
Panchal and Kumar [32]	2016	Reliability and risk analysis	General	
Hüels and Remke [15]	2016	Resilience, battery management analysis	Fluid SPN	
Marrone and Gentile [28]	2016	Resilience, energy management	Fluid SPN	
Matos and Sanchez [29]	2016	Fault tolerance, fault recovery	Hybrid PN	
Morris et al. [30]	2017	Availability and resiliency analysis	SRN	
Mahdi et al. [27]	2017	Reliability and availability analysis	SPN	
Sreerama and Swarup [37]	2017	Fault localization and diagnostics	General	
Jiang et al. [17]	2018	Fault detection, diagnostics and recovery	General	
Li et al. [22]	2018	Reliability analysis, topology attacks	General	

Table 3. Usage of Petri Nets for Reliability analysis (4.3)

source example: Perez-Palacin, D., Mirandola, R., & Merseguer, J. (2012). QoS and energy management with Petri nets: A self-adaptive framework. Journal of Systems and Software, 85(12), 2796-2811. B.Rossi • Blansko Summer School 2020 • Aug 31, 2020

Ex5. Code Quality issues - with Stano, Martin

Goal: Understand the impact of code quality in the context of CPS development.

Comparing Maintainability Index, SIG Method, and SQALE for Technical Debt Identification

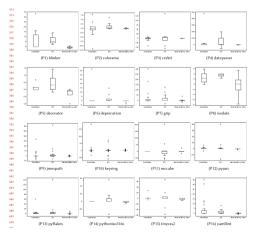
PETER STREČANSKÝ, Masaryk University

STANISLAV CHREN, Masaryk University

BRUNO ROSSI, Masaryk University

There are many definitions of software Technical DeW (10) that were proposed over time. While many techniques to measure 1DF emerged in record time, there is all that calcu anderstanding about these different techniques compare vitres regulated to software positors. The good of this paper is to had some light on this aspect, by comparing there relatiogane about 1D identification that were positors. The good of this paper is to had some light on this aspect, by comparing there relatiogane about 1D identification that were positors. The good of this paper is to had some light on the terms of trends and a SQAL analysis. Considering 2D good some PMon infrared and the software is the different positors in the terms of trends and a solution. Solution is considered to the program of particles of the terms of the comparison of the impact positors of the terms of the comparison of the impact positor of the terms of the comparison of the impact positors of the terms of the comparison of the impact positor of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the impact positors of the terms of the comparison of the terms of terms of terms of terms of terms

Additional Key Words and Phrases: Software Technical Debt, Software Maintenance, Software Quality, Maintainability Index, SIG Method, SQALE


ACM Reference Format:

Peter Strečanský. Stanislav Chren, and Bruno Rossi. 2020. Comparing Maintainability Index, SIG Method, and SQALE for Technical Debt Identification. 1, 1, Article 4 (August 2020), 19 pages. https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION

Technical Debt (TD) is a metaphor introduced by Ward Cominghum in 1999 [6]. Carningham compared poor decisions and abortcuts taken during software development to economic debt. Even though these decisions can help in the short-term, such as speeding up development or the release process, there is an unavoidable cost that will have to be paid on the long term in terms of re-development and increased complexity for the implementation of new features, not to mention possible defects and flattness.

The fundamental of this metaphor, however, was shaped in the 80s, when Lehman introduced the laws of software evolution [27]. The second law states that "as a system evolves, its complexity increases unless work is done to maintain or reduce it? Even though this metaphor was coined more than two decades ago (and almost 40 years passed since the

B. Rossi • Blansko Summer School 2020 • Aug 31, 2020

Recent Publications

.:Accepted/Published:.

- Ošlejšek, R., Rusnák, V., Burská, K., Švábenský, V., Vykopal, J. and Cegan, J., 2020. Conceptual Model of Visual Analytics for Hands-on Cybersecurity Training. IEEE Transactions on Visualization and Computer Graphics (TVCG) – IF 3.078.
- Ošlejšek, R. and Pitner, T., 2020. Optimization of Cyber Defense Exercises Using Balanced Software Development Methodology. International Journal of Information Technologies and Systems Approach – IF 0.18.
- Motschnig, R., Silber, M. Švábenský, V. How Does a Student-Centered Course on Communication and Professional Skills Impact Students in the Long Run?, Frontiers in Education (FIE) 2020, IEEE.
- Mbarek, B., Chren, S., Rossi, B. and Pitner, T., 2020, April. An Enhanced Blockchain-Based Data Management Scheme for Microgrids. In WAINA2020 (pp. 766-775). Springer.
- Strečanský, P., Chren, S. and Rossi, B., 2020. Comparing maintainability index, SIG Method, and SQALE for technical debt identification. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp. 121-124).
- Strečanský, P., Chren, S., Rossi, B. (Invited extended version), Scientific Programming, 2020 – IF 1.2. B.Rossi • Blansko Summer School 2020 • Aug 31, 2020

Future Publications

.:WiP:.

- Ošlejšek, Macák, Bühnová. Cybersecurity Training Session Analysis using Process Mining under preparation, conference paper.
- Zákopčanová, Kouřil, Hrdina, Beran, Ošlejšek. Fimetis: Visualizations and Data Analysis for Digital Investigation - under preparation, conference paper.
- Motschnig, R., Silber, M. Švábenský, Extension of FIE article for IEEE Transactions on Communication.
- Burská, K., Rusňák, V., Ošlejšek. R. Data-driven Insight Into the Puzzle-based Cybersecurity Training submitted to conference.
- Mihal, P., Schvarcbacher, M., Rossi, B., Pitner, T. Smart Grids Co-Simulations: State of Research. Submitted to Elsevier Sustainable Computing – IF 1.8.
- Mbarek, B., Chren, S., Rossi, B., Pitner, T. A Hyperledger Fabric Blockchain-based Electricity Trading Model in Microgrids submitted to Elsevier Journal of Pervasive and Mobile Computing – IF 2.7.
- Gryga, L., Rossi, B. Co-Simulation of Smart Grids: Dynamically Changing Topologies in Failure Scenarios, to be submitted to FEDCSIS2020.

Future Plans

- Collection of detailed data capturing the behavior of participants of cybersecurity training sessions. Reconstruction of users' walkthroughs from this data using process mining methods.
- Usage of co-simulations in the context of Smart Infrastructures (Smart Grids, specifically microgrids) to simulate different layers of the infrastructure.
- Collection of recommendations about cyber-qualification programs to build profiles for cyber-training.
- Studying generic competence models to see how these can be useful for cyberqualifications. Furthermore, studying competence models for digital literacy and investigating how a zero-outage culture can be approached in (ICT-)organizations.
- Joint paper with other participants of the C4E, subprogram 3 a survey paper mapping existing simulators of critical infrastructures and their properties (models of CII supported, learning features available, data analysis support, ...).

MUNI C4E

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

C 4 E . C Z