Process Mining in Cybersecurity

Martin Macák

macak@mail.muni.cz

Summer School of Applied Informatics, Bedřichov September 6, 2019

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

Outline

- 1. Introduction to process mining
- 2. Process mining in cybersecurity

Process-centric data analysis

- What really happened in the past?
- Why did it happen?
- What is likely to happen in the future?
- When and why do people deviate?
- How to redesign a process to improve it?
- •

- Typically working with event logs which represent processes
- These logs have to contain cases (sequences of events)

```
Martin; order_start
Martin; select_hamburger
Martin; choose_card_payment
Martin; confirm_order
Martin; order_end
```


- Each event has:
 - caseld
 - activity
 - timestamp (optional)
 - resource (optional)
 - other data (optional)

```
1; order_accept; Dec 2, 2017 10:30:58 AM; Peter; 21 1; order_cooked; Dec 2, 2017 10:39:24 AM; Victor; 24 1; order_delivered; Dec 2, 2017 11:12:37 AM; Emma; 19
```


Sometimes, the mapping is not clear

```
1; order_accept; Dec 2, 2017 10:30:58 AM; Peter; 21
1; order_cooked; Dec 2, 2017 10:39:24 AM; Victor; 24
2; order_accept; Dec 2, 2017 10:40:21 AM; Peter; 21
3; order_accept; Dec 2, 2017 10:42:19 AM; Greg; 34
1; order_delivered; Dec 2, 2017 11:12:37 AM; Emma; 19
2; order_cooked; Dec 2, 2017 11:17:04 AM; Victor; 24
2; order_delivered; Dec 2, 2017 11:24:00 AM; Peter; 21
```

- For example, the name of the worker can be:
 - resource
 - activity
 - caseld

Analysis of the past

- Process discovery techniques
- From the event log, we create a model that represents how the process was executed in reality
- Model can be represented as a petri net, activity diagram, BPMN diagram, ...
- Conformance checking techniques

Process discovery

```
1; order accept; Dec 2, 2017 10:30:58 AM; Peter; 21
1; order cooked; Dec 2, 2017 10:39:24 AM; Victor; 24
2; order accept; Dec 2, 2017 10:40:21 AM; Peter; 21
3; order accept; Dec 2, 2017 10:42:19 AM; Greq; 34
1; order delivered; Dec 2, 2017 11:12:37 AM; Emma; 19
2; order cooked; Dec 2, 2017 11:17:04 AM; Victor; 24
2; order delivered; Dec 2, 2017 11:24:00 AM; Peter; 21
```


Process discovery challenges

- Concurrency
- Loops
- Noisy behavior
- No negative examples in the log
- Too many allowed behaviors

Process discovery activities

- Explore processes at run-time
- Discover process models
- Compare the model of desired behavior with the model of reality
- Check the deviations in historic data
- Promote the model that shows the desired behavior

Adding additional perspectives

- Control flow is not the only perspective
- We can enhance the existing process models with:
 - Social network analysis
 - Organizational structures
 - Resource behavior analysis
 - Time perspective
 - Decision points mining
 - ...

Additional perspectives

- We can add many others
- We can combine them to the integrated model
- Our model is enhanced, we might get better results

Conformance checking

 We can use the existing model to identify deviations in the behavior from logs

```
1; order_accept;
1; order_nofitication;
1; order_delivered;
1; order_cooked;
//NOK
```


Analysis of the present

- Also called operational support
- We use our model to analyze running cases
- We can:
 - Detect deviations in real-time data using the model of the desired behavior
 - Do real-time predictions (prob. of success, remaining time,...)
 - Make recommendations

Operational support: Detect deviations

- We consider only the partial trace of a particular case
- We want immediate response when the deviation occurs
 - a) Token-based replay
 - b) Business rules

Detect deviations: Token-based replay

Check the conformance with the model

```
1; order_accept; //OK
1; order_nofitication; //OK
1; order_cooked; //OK
1; order_delivered; //OK
5; order_accept; //OK
5; order_nofitication; //OK
5; order_delivered; //NOK
```


Detect deviations: Business rules

- Specific rules we want to follow
- To define them, we can use Declare
 - Constraint-based workflow language that uses graphical notations and semantics based on Linear Temporal Logic
- Example:
 - a and b cannot happen in the same case
 - a cannot happen before c has happened
 - every d have to be eventually followed by a or b

Operational support: Predict & Recommend

- We can apply data mining techniques (supervised learning, ...)
- Examples of predictions:
 - Total cost of the current case
 - Total service time for the current case
 - Probability of meeting the deadline
 - Remaining flow time
- Examples of recommendations:
 - Minimize the total costs
 - Maximize the number of accepted cases
 - Minimize resource usage
 - Minimize the remaining flow time

Process Mining in Cybersecurity

- Visual analysis of model
- Model comparison
- Conformance checking

Visual analysis of model: DNS traces

- Event log built from DNS traces (caseID, activity, timestamp)
- caseID = {client, DNS Server}
- activity = {query/response, type}
- Detection of spambots

Fig. 6. Simplified graph of the attack shown in Figure 5. We show the model after filtering the 10% of most active IPs.

Model comparison: Smart Grids

- Anomaly detection of power consumption
- Classification of consumption to levels
- Then they discover graphs of consumption per short period
- Time-evolving graph approach: comparing consecutive graphs using a distance or similarity function
- They chose Hamming distance and cosine similarity measure

Figure 3. Consumption graphs of customer #1565 of two consecutive weeks.

[2]

Conformance checking: Smartphones

- Attack: user activated a malicious URL, which resulted in downloading personal user data via known vulnerability
- They designed a model of this attack from OS-generated information about performed actions, browser history, and network connection log
- Token-based replay with this model

Process mining cybersecurity domains (fields)

- Network (IS, DNS, IDS, websites)
- Smart grids (anomalous behaviour of energy usage)
- Smartphones (social engineering attacks, malwares)
- Banking (frauds, security deviations)
- Industrial Control Systems (cyberattacks)
- Business processes (anomalies, deviations in the event data)

Conclusion

Process mining: discover, enhance, operational support

Usage of process mining in cybersecurity:

- Visual analysis of model
- Model comparison
- Conformance checking

Current domains:

 Smart grids, Banking, Smartphones, Business processes, Network, Industrial Control Systems

Questions & comments?

Sources

- [1] J. Bustos-Jiménez, C. Saint-Pierre, and A. Graves, "Applying process mining techniques to dns traces analysis," in 2014 33rd International Conference of the Chilean Computer Science Society (SCCC), Nov 2014. doi: 10.1109/SCCC.2014.9. ISSN 1522-4902 pp. 12–16
- [2] S. Bernardi, R. Trillo-Lado, and J. Merseguer, "Detection of integrity attacks to smart grids using process mining and time-evolving graphs," in 2018 14th European Dependable Computing Conference (EDCC), Sep. 2018. doi: 10.1109/EDCC.2018.00032 pp. 136–139.
- [3] L. Hluchý and O. Habala, "Enhancing mobile device security with process mining," in 2016 IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY), Aug 2016. doi: 10.1109/SISY.2016.7601493. ISSN 1949-0488 pp. 181–184.

Sources

- Presentation based on the book Process Mining: Data
 Science in Action
- https://www.springer.com/gp/book/9783662498507

