LASARIS: FUTURE PERSPECTIVES

Barbora Bühnová
buhnova@fi.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO
Critical IT infrastructures

Examples

Smart Grid infrastructure

- Wind turbines
- Generator
- Transmission system
- Phasor measurement unit
- Substation
- Distribution system
- Smart switch
- Two-way communication
- System operator control and data center
- Advanced control methods, such as distribution automation
- Improved interfaces, such as distribution system modeling software
- Smart meter
- Electric vehicle
- Factory
- Offices
- Smart appliances
- Home area network
- Home monitoring of electricity data
What do we aim for?

- Infrastructure we can **rely on**
 - Dependable IT infrastructure

- It's not just about **security**
 - **Reliability, availability, safety, survivability** are of equal importance!

- There are two types of troubles:
 - **Intentional** and **unintentional**

- **Human element** is a good part of it
 - Employees, internal IT admins, hackers

© Barbora Bühnová
Towards dependable IT infrastructures

- **Steps towards dependable critical infrastructures**
 - Design guidelines
 - Simulation and analysis
 - Monitoring and control
 - Response management

- Some of them help you to **prevent** an attack/failure, some to **recognize** an attack, some to ensure **safety under** attack, some to **recover**, some the **forensics after** the attack

- **Design guidelines for dependability**
 - **Fault/Failure** – Reliability, Availability
 - **Vulnerability/Attack** – Security, Safety, Survivability
Reliability/Availability

• **Fault avoidance**
 • **The development process** is organized so that faults in the system are detected and repaired before delivery to the customer.
 • **Verification and validation techniques** are used to discover and remove faults in a system before it is deployed.

• **Fault detection**
 • **Run-time techniques** to detect faults and failures.

• **Fault tolerance**
 • The system is designed so that faults in the delivered software do not result in system failure.

© Barbora Bühnová
Survivability = system ability to deliver essential services whilst it is under attack or after part of it was damaged.

- **Resistance**
 - Avoiding problems by building capabilities into the system to resist attack.

- **Recognition**
 - Detecting problems by building capabilities into the system to detect attacks and assess the resultant damage.

- **Recovery**
 - Tolerating problems by building capabilities into the system to deliver services whilst under attack.

© Barbora Bühnová
Future of critical infrastructures
Thank you for your attention!

- **Masaryk University (MU)**
 - Established in 1919
 - 2nd largest in Czechia
 - Around 35,000 students

- **Faculty of Informatics, MU**
 - Established in 1994
 - 1st faculty of comp. science
 - More than 2,000 students

Barbora Bühnová, FI MU Brno
buhnova@fi.muni.cz
www.fi.muni.cz/~buhnova