MULTI-LAYERED RELIABILITY ANALYSIS IN SMART GRIDS

Stanislav Chren

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO
Smart Grid

• **Smart grid** is an electricity network that employs innovative products and services together with intelligent monitoring, control, communication and self-healing technologies.

• Challenges of **legacy power grids**:
 • Uninterrupted power supply
 • Distributed energy resources (DER)
 • Load management
 • New types of electrical devices
Smart Grid Reference Architecture
Smart Grid Reliability

• Power (smart) grid is considered a **critical infrastructure**
 • High requirements for reliability
 • Close relation to security, adequacy, availability, survivability and resilience

• Understanding of reliability varies between grid layers
 • **Communication**
 • fraction of time a service is available, fraction of successfully delivered packets, packet delivery latency,…
 • **Distribution**
 • SAIFI, SAIDI, CAIDI, ...

• **Loss of load** probability
Existing Approaches

• Reliability engineering
 1. Reducing the likelihood or frequency of the failure.
 2. Identification and correction of the causes of the failures
 3. Dealing with occurred failures
 4. Estimating the likely reliability of new designs and analysis of reliability data

• Most of the reliability-related effort focus on
 • Fault-tolerance, fault-prevention and failure-recovery

• Reliability estimation methods for (smart) power grids consider physical layer only.
 • Probability of blackouts
 • HW and communication links failures
 • Missing evaluation of failures in software components.
Software Reliability – Palladio Model
Aims of the Thesis

- **Multi-layered** approach for the reliability analysis of a smart grid infrastructure.
Approach Requirements

• In order to address the shortcomings of existing software and power grid reliability analysis, our approach should meet the following **requirements**:
 • **Multi-layered** architecture and analysis
 • **State-based** formal analysis method
 • **Scenario-based**
 • **Hierarchical** decomposition of components
 • Integration of **severities** for failure types
 • Enhanced reference model with additional **artifacts** and **parameters**.
 • Representation of **uncertainty**
Research Questions

1. What are the **most useful formal methods** for reliability analysis on smart grid scale?

2. What are the **critical parameters and components** in the reliability analysis of smart grid?

3. What is the effect of **uncertainty propagation** from the input data to the method outputs based on the input data representation?

4. What information should be available in the smart grid event logs so that they can be used for automated **identification of failure types and points of failure**?
Deliverables

1. Smart grid reliability analysis approach
 • Parametrized reference model capturing the mapping between the layers of the smart grid infrastructure.
 • Analysis method that transforms the reference method into a formal representation and derives the reliability outputs.
 • Tool implementing the reference model and analysis method.

2. Method for extracting failure types and points of failure from the event logs collected from smart meters and other smart grid components.

3. Taxonomy of failure and fault types in smart grids
Methods and Approach

• Exploration of smart grid domain, survey of smart grid deployment projects.

• Review of formal methods for reliability analysis

• Extension of Palladio Component Model
 • More detailed hardware modelling
 • Hierarchical decomposition
 • Additional annotations and parameters
 • Uncertain parameters

• Modelling and evaluation of the proposed solutions

• Validation of the approach – simulation and sensitivity analysis
 • Feasibility of modeling abstraction
 • Feasibility of estimation of model annotations
 • Validity of formal model selection
 • Significance and robustness of prediction results

• Iterative refinement
Time Plan

Spring 2017
- Thesis proposal defence
- Continuation of our previous work of anomaly
- Analysis of Palladio for possibilities of plugin extensions
- Evaluation formal models

Fall 2017
- Construction of the reference model
- Extension of the hardware modeling capabilities of the Palladio tool
- Publication of the detection of the smart grid failure types
- Publication of the taxonomy of failure and fault types in smart grids
Time Plan

• **Spring 2018**
 • Implementation of the hierarchical decomposition
 • Implementation of the uncertainty representation
 • Publication of the conceptual meta-model.
 • Evaluation of the model on the case study
 • Doctoral thesis preparation

• **Fall 2018**
 • Doctoral thesis submission
 • Publication of the reliability model, including the tool and evaluation of a case study.
Achieved Results - Publications

• **Detection of anomalies in Smart grid network**

• **Local load optimization**
Achieved Results - Publications

• **Smart grid technologies and architectures**

• **Failure data collection for reliability prediction models**

• **Reliability in smart cities**
Thank you for your attention.

Stanislav Chren, FI MU Brno
chren@mail.muni.cz