Machine learning on smart-grid data

Outline

- smart-grid infrastructure
- available data
- data quality
- example questions / problems
- machine learning applications
- machine learning on big data - boosted decision trees

Smart-grid infrastructure

Electrical infrastructure

Available data I

- static
- topological data, consumer distribution tariff, FW version, ...
- dynamic
- sensor measurements
- consumption, production, voltage, current, ... (ca. 30 variables, 15 min period)
- events reported by devices
- tariff switching, power on/off, overvoltage, ...
- \% data transferred, transmission failure, ...
- monitoring data
- memory available, battery status, communication times, ...

Available data II

- additional computed / derived data
- data from external sources
- weather forecast, cellular infrastructure data, ...
- millions of customers \Rightarrow millions of devices \Rightarrow billions of measurements per day
- 3.5 millions of smart-meters (ČEZ)
- 30 measured variables
- 96 measurements a day
- $3.5 \times 10^{6} \times 96 \times 30 \times 4 B \sim 40$ GB / day
- soon becomes „BIG DATA"

Data quality

- high reliability (but not always!)
- communication issues
\Rightarrow missing data
\Rightarrow inhomogeneity
- inconsistency issues
- need for complex validation
- data quality and completeness determination
- missing values imputation / estimation

Example questions / problems

- operational problems detection and identification
- local load control
- can we balance local consumption and production?
- solar plants x water heaters, el. heating, batteries, ...
- technical / non-technical losses
- problematic localities identification
- customer clustering

Machine learning application - regression I

- quantitative output
- looking for function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
- many methods
- metrics
- mean square error (MSE)
- mean absolute error (MAE)
- missing data imputation
- prediction of future values

c15	t	15m	day	cavg	tavg	\cdots
76	12.36	77	119	494	7.21	\ldots
4158	3.64	2	89	842	5.71	\ldots
1041	8.76	89	89	494	9.20	\ldots
267	-3.46	94	5	47	-2.94	\ldots
1131	-10.9	13	21	494	-7.88	\ldots
..						
?	4.56	23	103	97	9.54	\ldots
?	20.74	72	208	125	19.17	\ldots
?	10.37	24	102	842	11.34	\ldots

Machine learning application - regression II

Machine learning applications - classification

- qualitative output ($f: \mathbb{R}^{\mathrm{n}} \rightarrow \mathrm{C}$)
- finite set of classes
- metrics
- accuracy
- precision / recall
- AUC
- localities
- controllable / uncontrollable
- problematic / stable

\boldsymbol{y}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	\ldots	
A	2.5	0.1	-3.1	\ldots	
C	-9.3	-3.7	8.0	\ldots	
B	-2.1	1.9	-9.2	\ldots	
A	6.3	3.3	-3.2	\ldots	
D	7.0	-7.7	3.8	\ldots	
\ldots					
$?$	1.8	5.4	3.8	\ldots	
$?$	-3.5	-0.8	2.2	\ldots	
$?$	7.7	9.9	1.9	\ldots	

- operational problems

Machine learning applications - clustering

- grouping similar objects together
- unsupervised learning
- many different metrics / algorithms
- hard to evaluate

Machine learning applications - anomaly detection

- detection of suspicious measurements
- detection of operational problems
- multivariate time-series

Detekce anomalii PM_0736 normalni rozdeleni

Machine learning on big data - boosted decision trees I

Decision trees

- split nodes
- greedy algorithm
- minimize cost function acc. to metric
- leaves
- mean of outputs (reg.)
- majority / distribution of classes (cl.)

Machine learning on big data - boosted decision trees II

Boosting

- ensemble model - forest rather than just one tree
- each tree built to minimize the error of the previous ones
- robustness

Machine learning on big data - boosted decision trees III

Obliviousness

- splits on each level are the same
- computational speed boost
- learning phase
- evaluation phase (no if's)
- robustness
- resistance to overfitting
- resistance to outliers

Machine learning on big data - boosted decision trees IV

Training on big data - distributed version

- Ph.D. thesis
- cost function computable „part by part"
- not all of them satisfy the condition
- minimize the number of passes through data
- efficiency
- fit into map-reduce or similar paradim

