

Machine learning on smart-grid data

Machine learning on smart-grid data - Jan Herman

1

Outline

- smart-grid infrastructure
- available data
- data quality
- example questions / problems
- machine learning applications
- machine learning on big data boosted decision trees

Smart-grid infrastructure

Available data I

- static
 - topological data, consumer distribution tariff, FW version, ...
- dynamic
 - sensor measurements
 - consumption, production, voltage, current, ... (ca. 30 variables, 15 min period)
 - events reported by devices
 - tariff switching, power on/off, overvoltage, ...
 - % data transferred, transmission failure, ...
 - monitoring data
 - memory available, battery status, communication times, ...

Available data II

- additional computed / derived data
- data from external sources
 - weather forecast, cellular infrastructure data, ...
- millions of customers ⇒ millions of devices ⇒ billions of measurements per day
 - 3.5 millions of smart-meters (ČEZ)
 - 30 measured variables
 - 96 measurements a day
 - 3.5 x 10⁶ x 96 x 30 x 4B ~ 40 GB / day
 - soon becomes "BIG DATA"

Data quality

- high reliability (but not always!)
- communication issues
 - ⇒ missing data
 - \Rightarrow inhomogeneity
- inconsistency issues
- need for complex validation
- data quality and completeness determination
- missing values imputation / estimation

Example questions / problems

- operational problems detection and identification
- Iocal load control
 - can we balance local consumption and production?
 - solar plants x water heaters, el. heating, batteries, ...
- technical / non-technical losses
- problematic localities identification
- customer clustering

Machine learning application – regression I

- quantitative output
- looking for function $\mathbb{R}^n \to \mathbb{R}$
- many methods
- metrics
 - mean square error (MSE)
 - mean absolute error (MAE)
- missing data imputation
- prediction of future values

c15	t	15m	day	cavg	tavg				
76	12.36	77	119	494	7.21				
4158	3.64	2	89	842	5.71				
1041	8.76	89	89	494	9.20				
267	-3.46	94	5	47	-2.94				
1131	-10.9	13	21	494	-7.88				
?	4.56	23	103	97	9.54				
?	20.74	72	208	125	19.17				
?	10.37	24	102	842	11.34				

Machine learning application – regression II

Machine learning applications – classification

- qualitative output ($f: \mathbb{R}^n \to C$)
- finite set of classes
- metrics
 - accuracy
 - precision / recall
 - AUC
- localities
 - controllable / uncontrollable
 - problematic / stable
- operational problems

Machine learning on smart-grid data – Jan Herman

у	x ₁	X ₂	X 3						
Α	2.5	0.1	-3.1						
С	-9.3	-3.7	8.0						
В	-2.1	1.9	-9.2						
Α	6.3	3.3	-3.2						
D	7.0	-7.7	3.8						
?	1.8	5.4	3.8						
?	-3.5	-0.8	2.2						
?	7.7	9.9	1.9						

Machine learning applications – clustering

- grouping similar objects together
- unsupervised learning
- many different metrics / algorithms
- hard to evaluate

Machine learning applications – anomaly detection

- detection of suspicious measurements
- detection of operational problems
- multivariate time-series

Detekce anomalii PM_0736 normalni rozdeleni

Machine learning on big data – boosted decision trees I

Decision trees

- split nodes
 - greedy algorithm
 - minimize cost function acc. to metric
- leaves
 - mean of outputs (reg.)
 - majority / distribution of classes (cl.)

Machine learning on big data – boosted decision trees II

Boosting

- ensemble model forest rather than just one tree
- each tree built to minimize the error of the previous ones
- robustness

Machine learning on big data – boosted decision trees III

Obliviousness

- splits on each level are the same
- computational speed boost
 - learning phase
 - evaluation phase (no if's)
- robustness
 - resistance to overfitting
 - resistance to outliers

Machine learning on big data – boosted decision trees IV

Training on big data – distributed version

- Ph.D. thesis
- cost function computable "part by part"
 - not all of them satisfy the condition
- minimize the number of passes through data
 - efficiency
- fit into map-reduce or similar paradim