
Architectural Tactics for the Design
of Efficient PaaS Cloud Applications
David Gešvindr Barbora Bühnová Tomáš Pitner

Introduction
Application deployment in the cloud is not itself a
guarantee of high performance, availability, and
other quality attributes, which may come as a
surprise to many software engineers who detract
from the importance of proper architecture design
of a cloud application. An operation of applications
designed for on-premises environment in a PaaS
cloud is costly and inefficient as they often rely on
expensive and poorly scalable services (eg.
commonly used relational databases).

Efficient PaaS cloud applications require
specific software architecture design, which
combines high variety of PaaS cloud services, not
commonly used in an on-premises environment.

Storage and Data Access Tactics

Materialized View Static Content Hosting

Valet Key Tactic

Messaging and Data Processing Tactics

Asynchronous Messaging Competing Consumers

Load Leveling

1934

1419

1159

840

518

231

37

37

37

33

32

17

0 500 1000 1500 2000

10x S3 (4 cores)

8x S3 (4 cores)

6x S3 (4 cores)

4x S3 (4 cores)

2x S3 (4 cores)

1x S3 (4 cores)

Requests per second

Azure SQL Database (S3, 100 DTU) Azure Table Storage

Comparison of read throughput with and without materialized view

Prepopulated views over data from primary data
storage are generated to highly scalable, inex-
pensive storage services (usually NoSQL).

➢ Data is always written first to a primary storage
which guarantees data integrity.

➢ After modification of primary data copy,
derived copies of data must be updated.

➢ Majority of client read requests is served by
highly scalable storage services where are
stored additional copies of data in a form
exactly matching client needs so that data can
be retrieved by a single query without any need
for an additional processing by the application
server.

In the PaaS cloud there is no single storage service that outperforms others in terms of high scalability,
low costs and complex querying and integrity enforcement support.

Static content should be distributed using
specialized storage services which scale
automatically with user demands and not by
more expensive application servers with
reserved performance.

1385

5129

0 2000 4000 6000

Azure App Service
(1 core)

Azure Blob Storage

Requests per second

Azure Blob Storage: $0.024 per GB/month + $0.00036 per 10,000
transactions

Azure App Service: $55.80/month (includes max 10 GB storage)

Web applications usually handle requests synchronously, which limits scalability but simplifies SW
architecture. Alternate approach is to take an advantage of asynchronous request processing.

To distribute secured static content a user
needs to be authenticated and authorized by
the application which loads and transfers the
file using server resources.

Valet Key Tactic uses a short-term access token
generated by the storage service and passed to
the client by the application server so that the
file can be downloaded directly from the
storage.

App
Server

Storage
Service

1. File requested 2. File loaded

3. File download

Multiple consumers (workers) can load
messages simultaneously from the queue which
increases scalability and elasticity as the
number of workers can quickly change.

2455

2016

1585

1108

539

0 1000 2000 3000

80 worker instances

64 worker instances

48 worker instances

32 worker instances

16 worker instances

Processed messages per minute

When requests are received irregularly in
bursts, highly scalable queue service is capable
to persistently store them so that workers can
process them at a constant rate.

505

19

0 200 400 600

Asynchronous
processing

Synchronous
processing

Requests per second

1st

server
instance

2nd

server
instance

nth

server
instance

…

HTTP requests
and responses

Azure Table
Storage

Azure SQL
Database

Worker
Role

2nd

server
instance

nth

server
instance

…

Azure
Service

Bus Queue

Asynchronous
operation
definitions

Web Client

1st

server
instance

REST API
Azure App
Service

from storage

Request retrieval rate Request processing rate

Problem Definition
When designing a software architecture, it is a
common good practice to use existing design
patterns, that are however not specifically de-
signed for cloud applications so they do not take
into account a rich set of services and features of
the PaaS cloud.

Objectives
Our objective is to examine the impact of current
state of-the-art architectural tactics and design
patterns available for on premise applications on
PaaS cloud applications.

Based on the measurable impacts we will create a
list of identified tactics, design patterns and their
combinations advisable for the design of PaaS
cloud applications.

Software architecture of a PaaS cloud application which combines
multiple PaaS cloud services to provide high scalability of both read
and write operations using Materialized View and Asynchronous
Messaging tactics.

Requests received by the application server are
not immediately processed, instead of that they
are stored in a highly scalable queue service and
confirmed to clients, therefore especially long
running operations are not terminated due to
client time-out.

Independently hosted worker processes conti-
nuously load messages from the queue and
process them.

As the client does not receive operation output as
a part of the response, is advisable to establish
additional notification channel.

Comparison of write throughput of a REST API with applied
materialized view tactic, which significantly increases complexity of
data modifications due to its requirement to update derived copies of
data. Use of asynchronous processing for data updates is strongly
recommended.

References:
GEŠVINDR, David and Barbora BÜHNOVÁ. Architectural Tactics for the
Design of Efficient PaaS Cloud Applications. In 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2016.

