SMART & INTELLIGENT BUILDINGS

Tomáš Pitner, Adam Kučera

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS MASARYK UNIVERSITY

Definition

- Devices in buildings connected to a network
 - Heaters
 - Air conditioning units (HVAC)
 - Lighting
 - Energy meters
 - ...
- Monitored and controlled remotely

Modern (Households & SOHO)

- "We have cheap computers, can we use them to control appliances?"
- Origins in ICT

Traditional (Large sites)

- "We have lot of devices in a building, can we facilitate the management?"
- Origins in civil engineering
 & electronics engineering

Households & SOHO

- Examples:
 - Arduino
 - .NET Gadgeteer
 - Energomonitor
 - Nest/Google thermostat
- Relatively cheap

- Technologies
 - Building Automation Systems
 - Building Management Systems
- Expensive
- Long device lifetime
- Compliance to standards

Households & SOHO

- Devices using:
 - Operating system
 - Wi-Fi
 - HTTP
 - Web services
 - Cloud
 - M2M, Internet of Things
- Controlled by
 - Web interface
 - Smart phones

- Devices using
 - Microcontrollers
 - Serial bus (RS232,RS485), Ethernet, TCP/IP
 - Specialized automation protocols
- Controlled by
 - Dedicated desktop applications
 - Web interface

Households & SOHO

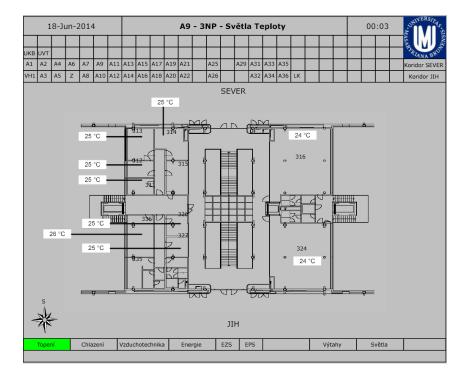
- ARM Cortex A8
- 40 MB flash

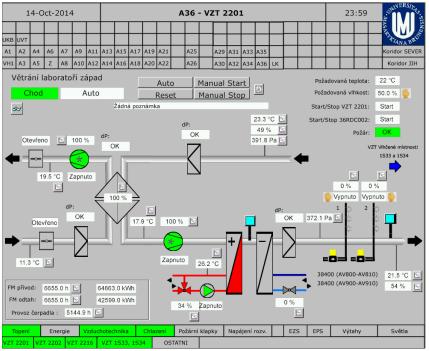
- CPU 25 MHz
- 128 kB RAM
- 1 MB flash

Households & SOHO

- Traditional security issues
- Not covered in the lecture

- Specific security problems
- Lecture aims to security vulnerabilities specific to *"large scale" building automation* systems and protocols




BAS & BMS

- BAS = Building Automation System
- **BMS** = Building Management System
- Used mostly at large sites
- Ensures automated operation of building technologies:
 - HVAC
 - Lighting
 - Safety & Security systems (Fire alarm, Access control)
 - Elevators
 - Energy monitoring

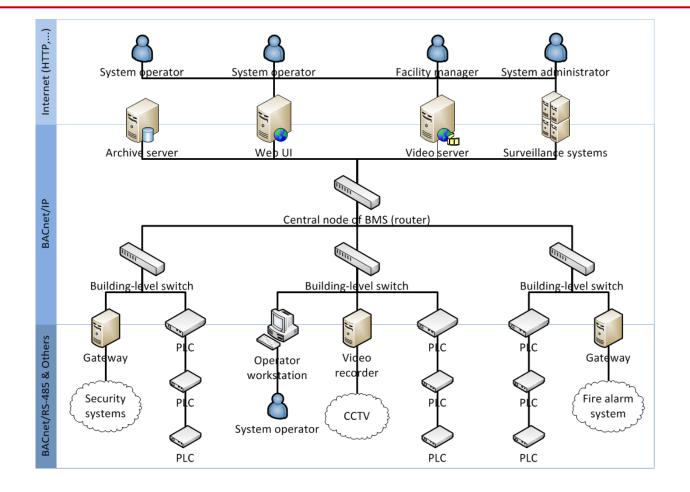
BMS-UI

BAS & BMS

- Remote monitoring and control
- Integration of different systems
- User interface
- Alarming
- Archiving
- Regulation algorithms
- Scheduling
- Cooperation


BMS – PLCs

- **PLC** = Programmable logical controller
- Specialized computer for automation
- Provides various types of input and outputs
 - Analog inputs –e.g. temperature, humidity, pressure sensors
 - Analog output e.g. valve opening
 - Digital (discrete) inputs e.g. motion sensor
 - Digital (discrete) outputs e.g. fan speed, relay control
- Programmable by specialized tools & languages


BMS – PLCs

BMS – structure

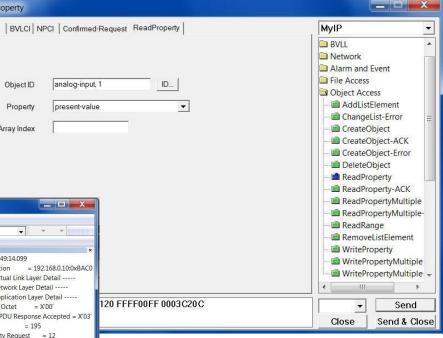
BMS – protocols

- Proprietary (PROFIBUS, S-Bus, etc.)
- **OPC** (OLE for Process Control/Open Platform Communications)
- LonWorks (Local Operating Network)
- MODBUS (Modicon Bus)
- KNX, EIB (European Installation Bus), EHS (European Home Systems protocol)
- **BACnet** (Building Automation and Control Network)

ReadProperty

Object ID

Property


Array Index

IP

BACnet protocol stacks

- BACnet stack (C)
- BACnet4J (Java)
- SCADA Engine (C/C++, C#, Java, LUA)
- Visual Test Shell for BACnet

••0 13/43/26/837 IUT Local Broadcast Network-Number-Is - S ••1 13/43/26/839 IUT Local Broadcast Network-Number-Is - S ••2 13/43/26/839 IUT Local Broadcast Nhon-Ser-Network - - ••3 13/43/26/839 TD 19/216/80/255/47 I-Am-Router-To-Network - - ••4 13/43/26/839 TD Local Broadcast I-Am-Router-To-Network - - ••4 13/43/26/839 TD Local Broadcast I-Am-Router-To-Network - - ••5 13/44/34/893 TD Local Broadcast I-Am-Router-To-Network - -	new imestamp : 13:49:14.099 ource/Destination = 192.168.0.10:0xBA BACnet Virtual Link Layer Detail BACnet Network Layer Detail
•0 13/3/20.837 IUT Local Broadcast NetWork Number-Is -S •1 13/3/20.839 IUT Local Broadcast NetWork Number-Is -S •2 13/3/20.839 IUT Local Broadcast Who-Is-Router-To-Network B •3 13/3/20.839 TD 19/2.168.025547 I-Am-Router-To-Network B •4 13/3/20.839 TD Local Broadcast I-Am-Router-To-Network B •5 13/4/34.893 TD Local Broadcast I-Am-Router-To-Network B	ource/Destination = 192.168.0.10:0xBA BACnet Virtual Link Layer Detail
↑7 13:45:29:005 TD IUT ReadProperty. ID=193 analog-input_1, present-value ◆8 13:48:54:539 TD IUT ReadProperty. ID=194 analog-input_0, acked-transitions	BACnet Application Layer Detail BACnet Application Layer Detail
< HI	Object Type = analog-inp Instance Number = 1 -[1] propertyIdentifier: present-value (85)

. . .

Types of goals – Sensitive data access

- Available through **automation protocol**:
 - Energy consumption
 - Room temperature, humidity,... (labs)
 - Security system data (locked/opened doors)
- Available in **computer systems**:
 - Credentials for controlling BAS/BMS
 - Proximity card numbers
 - CCTV cameras' position, orientation & control

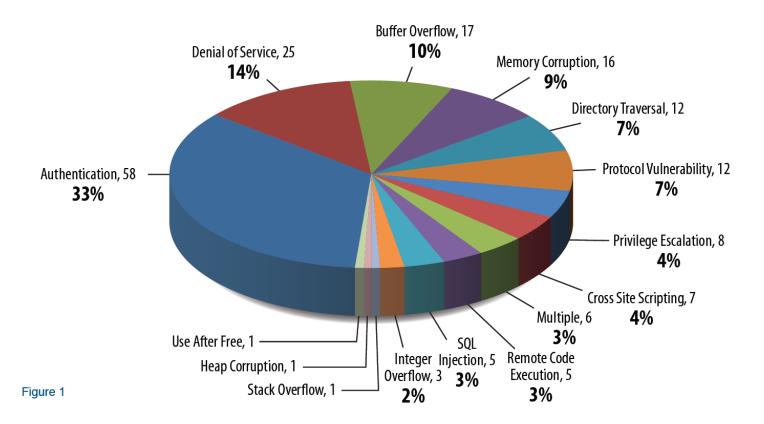
Types of goals – Influencing the operation

- Attacker can get affect the operation of subordinate systems (HVAC, security system)
- BAS/BMS itself is working correctly
- Goals:
 - Increase operational costs (turning on air-conditioning units)
 - Damage a public image of organization (inconvenient room temperatures)
 - Cover or facilitate other malicious activity (turn off fire alarm; open doors)

Types of goals – Temporal malfunction

- Variation of previous type of attack
- Causes BAS/BMS malfunction
 - DoS, DDoS
 - Configuration changes
 - Supplying incorrect data to the system and operators (spoofing)
 - Preventing data (notifications & alarm messages) from reaching its recipient (spoofing)
- Prevents operators from monitoring and controlling the system or its part

Types of goals – Physical damage


- Damage of subordinate devices (valves, engines,...)
- Caused by erratic commands from the BMS/BAS
- Can be performed using valid communication by automation protocol

Stuxnet

- Attacking critical infrastructures
- Similar technology as used in intelligent buildings

Security issues of BMS

Industrial control system vulnerabilities in 2013 Source: ICS-CERT Monitor, January – April 2014

•

Security issues of BMS – Software

- Proprietary applications
 - Gaining access to management applications (ActiveX vulnerabilities)
 - Gaining access to user credentials (web user interface SQL injection)
- Open Source applications & protocol stacks
 - Used for implementing protocol gateways (e.g. Security systems)
 - Largely affected e.g. by OpenSSL Heartbleed

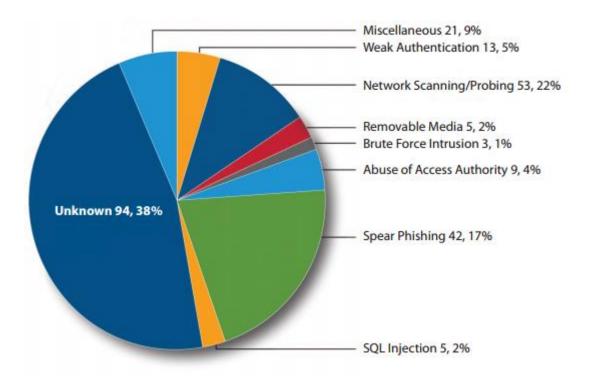
Security issues of BMS – PLCs

- Often limited only to communication using automation protocol
- Often do not support security features (AAA)
- Sensitive to DoS
- Software of PLC can contain vulnerabilities (hardcoded passwords,...)

Security issues of BMS – Protocols

- Protocols aim for easy integration & communication
 - Provide variety of discovery & data modification services
 - Communication is usually open (not secured)
 - Authentication and authorization is not mandatory

- Particular types of attack are possible due to the nature of the protocol
- They do not exploit any vulnerabilities that could be fixed


26. 10. 2016

Security issues of BMS – Other problems

- Installation is performed by automation specialists
- Security is not their concern
- Lack of experience with risk evaluation
- Security requirements are often missing in the project specification provided by the customer
- Possible problems:
 - Default passwords
 - Nonrestricted remote access
 - Nonrestricted physical access
 - Insufficient documentation

Security issues of BMS – Access vectors

Incidents by access vector in 2014 Source: ICS-CERT Monitor, September 2014 — February 2015

- Based on Green Lights Forever: Analyzing the Security of Traffic Infrastructure study by Alex Halderman et al.
- Details available at <u>https://jhalderm.com/pub/papers/traffic-woot14.pdf</u>
- Different field, similar technologies and security issues

- Setup:
 - Traffic lights at intersections controlled by locally installed programmable controllers
 - Controllers are interconnected using radio links
 - Radio uses **proprietary protocol** similar to 802.11, compatible hardware should not be available to public
- Issues:
 - No network communication encryption
 - Default passwords (available on the vendors' web pages)
 - Vulnerability of controller operating system (open debug port)

- Connection:
 - Connecting to the wireless network using specialized hardware (radio transmitter)
 - Distance from a nearest controller > 0.5 mile (800 m)
- Accessing a controller:
 - Using OS debug port Allows memory dump and device reset
 - Using **compliance with NTCIP 1202 standard** for traffic signal controllers Allows change of the operation parameters (**lights timing**)

- Possible attacks:
 - Denial of service stopping normal functionality
 - "All lights red" also causes traffic congestion
 - "All lights green" controller detects unsafe configuration and shuts down until recovered by operator with physical access
 - Traffic congestion
 - changing traffic timing (short green signal)
 - possible to combine changes made on multiple intersections
 - Light control
 - Personal gain ("Always green light")
 - Slowing down emergency response vehicles

Use case – ATM withdrawal

- Based on article Texting ATMs for Cash Shows
 Cybercriminals' Increasing Sophistication by Daniel Regalado from Symantec
- Full article available from <u>https://www.symantec.com/connect/blogs/texting-</u> <u>atms-cash-shows-cybercriminals-increasing-</u> <u>sophistication</u>
- Different field, similar technologies and security issues

Use case – ATM withdrawal

- Setup:
 - ATMs are often powered by standard PCs with Windows XP (or Windows XP Embedded)
- Issues:
 - Cash vault is extremely well secured, however the electronics (i.e. computer) is not – USB ports are easily accessible
 - Windows XP OS is no longer supported
 - OS is not protected against software attacks and **malware**

Use case – ATM withdrawal

- Connection:
 - Access the USB port
 - Infect the computer OS with **malware** (Ploutus)
 - Connect a cell phone to the USB port, acting as USB modem
- Withdrawal:
 - The phone receives SMS in specific format, converts it to the TCP packet and sends it to the computer
 - Network Packet Monitor (NPM) module of the malware detects the packet and executes the withdrawal command (another part of the malware)
 - ATM issues money

Use cases – Other known issues

- Published by ICS-CERT (U.S. Department of Homeland Security)
 - <u>https://ics-cert.us-cert.gov/advisories</u>
 - <u>https://ics-cert.us-cert.gov/alerts</u>

26. 10. 2016

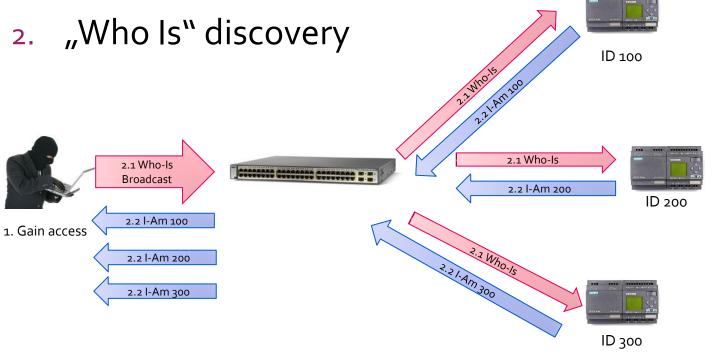
. . .

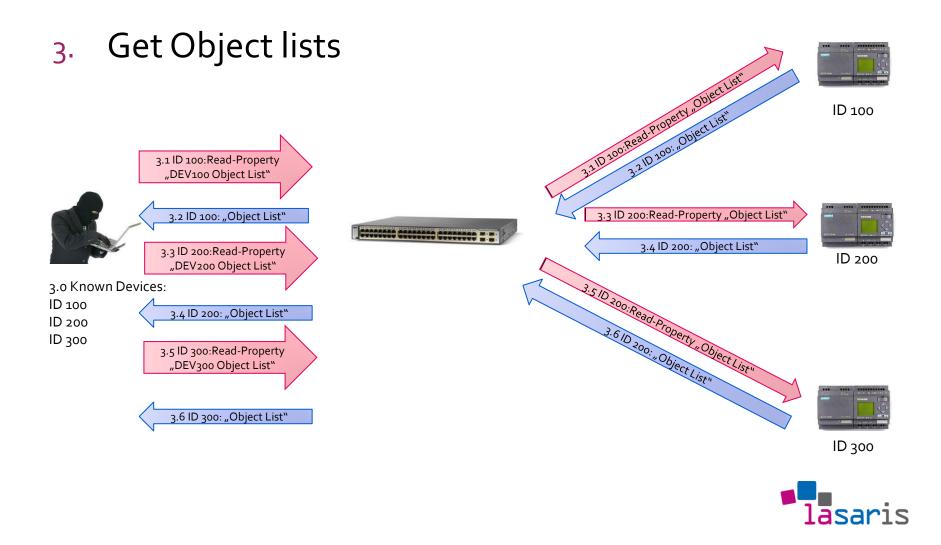
Use case – Denial of Service (BACnet)

1. Gaining access to BACnet network

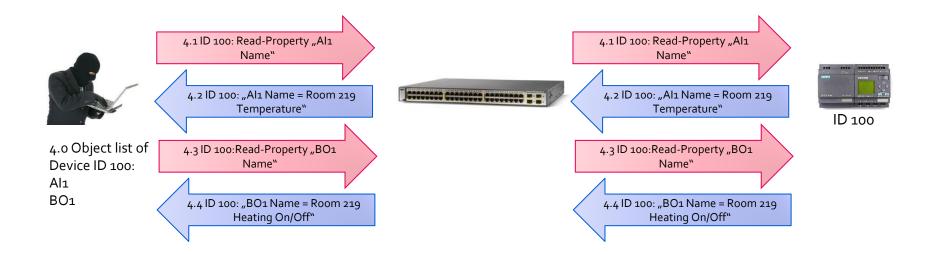
- Server or workstation (remote or physical access)
- Network socket (physical access)
- 2. Affecting communication
 - Using computational power, overwhelming PLCs and servers – repeated broadcast "Who Is" discovery / malformed packet (devices are obliged to respond)
 - Redirecting communication Advertising yourself as a router

Use case – Gaining system control (BACnet)


- Attack does not exploit any vulnerabilities
- Only valid BACnet protocol messages are used
- Attacker gains control over the BAS (switches on heating, opens door lock)
- Attacker gains access to sensitive data (Occupancy sensor data)



asa


Use case – Gaining system control (BACnet)

- 1. Gaining access to BACnet network
 - Server or workstation (remote or physical access)
 - Network socket (physical access)

Get Object names (repeat for each device – example for device 100 is shown)

5. Examine object (data point) names

Device	Object type	Object Id	Object name
100	Analog Input	100.Al1	Room 219 Temperature
100	Digital Output	100.BO1	Room 219 Heating On/Off
200	Digital Input	200.Bl1	Room 220 Motion sensor
200	Digital Output	200.BO1	Room 220 Fan Speed
200	Digital Output	200.BO2	Room 220 Lights
200	Analog Input	200.Al1	Room 220 Electricity Con.
300	Digital Input	300.Bl1	Room 220 Zone state
300	Digital Output	300.MO1	Room 200 Lock

Overwrite current values with harmful 6. 6.310 200:Write Property BO2 Values ON ones & access sensitive data ID 100 6.1 ID 100: Write-Property BO1 Value=ON 6.2 ID 200:Read-Property "BI1 Value" 6.2 ID 200:Read-Property 6.3 200:Bl1 = OFF "Bl1 Value" ID 200 6.4 ID 300: Write-Property MO2 Value=OFF 6.3 200.Bl1 = OFF 6.4 ID 300: Write-Property MO1 Value=OFF Steps: 6.1: Turns of heating in room 219 6.2: Finds out if anyone is in the room 220 **6.3:** Response – The room is empty ID 300 6.4: Open the lock for room 220

3

Use case – Gaining system control (BACnet)

- Implementation in *bacnet4J* protocol stack:
 - Device initiation & device discovery (step 2)

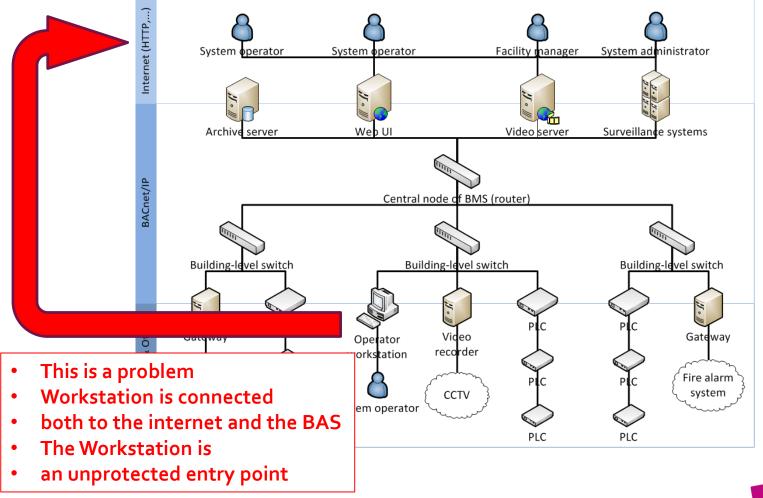
```
int localDeviceId = 100000;
IpNetwork network = new IpNetwork();
Transport transport = new Transport(network);
localDevice = new LocalDevice(localDeviceId, transport);
localDevice.sendGlobalBroadcast(new WhoIsRequest()); // 2.1 - Who-Is Discovery
```

Getting object lists & object names (steps 3 & 4)

- Implementation in *bacnet4J* protocol stack (cont'd):
 - Changing values & reading data (step 6)

Security in BAS/BMS – Isolation

- Isolate BMS network from Internet
- Use firewall
- Limit number of devices connected to both networks:
 - Web interface
 - Archive server
 - Integration services
 - Monitoring services
- Update software (Caution! Do not update without testing!)



Security in BAS/BMS – Isolation

- Security of devices (servers) connected to both networks (Internet, BMS) is critical part of the security of the whole system
- If attackers are able exploit vulnerability of such devices, they effectively gain unlimited access to the network

Security in BAS/BMS – Isolation

Security in BAS/BMS – AAA

- Allow access to the BMS only through channels with AAA (Authentication, Authorization, Auditing):
 - Web interface
 - Terminal services/Remote desktop
 - VPN

26. 10. 2016

Security in BAS/BMS – Physical security

- **Physically** securing network elements:
 - Network sockets
 - Switches & routers
 - Servers & devices
- Require some sort of physical access control (keys, identity cards)
- Hard to accomplish PLCs need to be placed near to the devices they control

26. 10. 2016

Security in BAS/BMS – "Network" level

- Data Link and Network layers according to ISO OSI
- Restrict access to the BMS network:
 - Disabling unused ports on switches
 - 802.1X authentication on ports used for field maintenance
 - Restriction to MAC address of PLC
 - Firewall between different IP segments of BMS network

Security in BAS/BMS – Application level

- Level of a building automation protocol
- Security must cover different "media types", for example:
 - BACnet/IP
 - BACnet/Ethernet
 - MS/TP (Master-Slave/Token Pass)
- Traditional security mechanisms (IPSec, Kerberos) are designed for use with TCP/IP only

BACnet Security – Features

- Optional feature in BACnet protocol
- Approved in 2010
- Provides:
 - Authentication
 - Confidentiality
 - Integrity

. . .

- Secure proxies for "security-unaware" devices
- Does not provide:
 - Authorization policies
 - Access control lists
 - Non-repudiation

BACnet Security – Limits

- Does not prevent attack when attacker gains physical access to the device and wiring
- Does not prevent DoS by malformed packets
- Not implemented yet (at least not by "big" vendors)

Security in BAS/BMS – Issues

- Web interfaces do not provide complete functionality -> potentially unsecure workstations are sometimes needed
- Increases cost of devices
- **Optional** (for BACnet) or **unavailable** (MODBUS)
- Complicates integration
- Vendors are inexperienced in security aspects of BMS
- Inconvenient in case of emergency repairs

Summary

- Topic: **Building automation** systems & Automation protocols
- Have potential to be attacked
- Vulnerable to wide spectrum of attacks
- Insufficient built-in security features
- Best practices: **Physical security** of devices & system **isolation**
- NIST Cybersecurity Framework should be applied (under US Department of Commerce)
- Vulnerabilities of automation systems are monitored by the ICS-CERT (under US Department of Homeland Security)
- Related topic: **Critical infrastructures** (lecture from 15. 10. 2014)

Readings

- Compulsory
 - ZHU, Bonnie, et al. A taxonomy of cyber attacks on SCADA systems. <u>http://bnrg.cs.berkeley.edu/~adj/publications/paper-files/ZhuJosephSastry_SCADA_Attack_Taxonomy_FinalV.pdf</u>
 - NEILSON, Carl. Securing a Control Systems Network. http://www.bacnet.org/Bibliography/BACnet-Today-13/Neilson-2013.pdf
- Recommended
 - ICS-CERT Monitor January-April 2014. <u>https://ics-cert.us-</u> cert.gov/monitors/ICS-MM201404
 - BHATIA, Sajal, et al. Practical Modbus flooding attack and detection. <u>http://eprints.qut.edu.au/66228/</u>
 - NIST Cybersecurity Framework: http://www.nist.gov/cyberframework/index.cfm

