
Semantically Partitioned Peer to Peer
Complex Event Processing
Exploiting Information Loss

References
[1] Nguyen F., Pitner T. 2012. Information system monitoring and notifications using complex event processing.
 In Proceedings of the Fifth Balkan Conference in Informatics (BCI '12). ACM, New York, NY, USA, 211-216.
[2] Kunc P., Nguyen F., Pitner T. 2013. Towards Effective Social Network System Implementation.
 New Trends in Databases and Information Systems Advances in Intelligent Systems and Computing. Springer Berlin Heidelberg, 327-336.
[3] Nguyen F., Škrabálek J. 2011 NotX service oriented multi-platform notification system.
 In Computer Science and Information Systems (FedCSIS). Szczecin, Poland, 313-316.
[4] Wu, E., Diao, Y., Rizvi, S. 2006. High-performance complex event processing over streams.
 In Proceedings of the 2006 ACM SIGMOD international conference on Management of data - SIGMOD ’06.
[5] Akram, S., Marazakis, M., Bilas, A. 2012. Understanding and improving the cost of scaling distributed event processing.
 In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (DEBS '12). ACM, New York, NY, USA, 290-301.
[6] Luckham, D. C., Frasca, B. 1998. Complex Event Processing in Distributed Systems.
 In Standford University, Vol 28.

Typical Complex Event Processing:
Red produceres are sending events
to black Complex Event
Processing engine.

Scaling Complex Event Processing [6] (CEP) applications is
inherently problematic. Our solution for scaling CEP applications
is fully distributed and aspires to scale CEP to the limits of
current hardware. Our solution simplifies existent Event
Processing Network abstraction and adds features on the level of
CEP that change direction of its usage.

Complex Event Processing was introduced by David Luckham. We are mainly
concerned with subarea of Luckam's work related to distributed CEP [6] (also
studied by [6] and [4]).
Motivation of our work stems from our work related to event processing [3]. We
have applied our theoretical ideas in concepts introduced in [2] and gave brief
introduction to our overall research in [1].

Results

We believe that fully distributed peer to peer CEP is
inevitable solution to high volume event streams. Our
implementation of presented concept is called peer CEP
(PCEP). The main property of PCEP is semantic scaling.
The scaling is not done by brute force or by exploiting
specific feature of specific event context, but it is done by
exploiting partitioning of peers according to their's affiliation
to matching rules.
The developed distributed engine is written in Java and thus
runs on heterogenous platforms. In the implementation we
leverage distributed algorithms developed in theirs natural
form - not optimized to the state of being obfuscated code.
In theoretical point of view, our solution introduces
rigorously defined trade off between matching capabilities
and throughoutput of the events. In the future we plan to
extend this knowledge by revealing statistical properties of
mentioned trade off situation.

Masaryk University
Faculty of Informatics
Botanická 68a
602 00 Brno
Czech Republic

Related WorkAbstract

There is ongoing research to distribute CEP. Every author
makes his own definition of distributed CEP. Usually, it
refers to a use of filters on producers or parallelizing
existing CEP operators. We see distributed CEP
differently. We aim to distribute the processing at
semantic level. We do not want to just filter unknown
events. We allow users to leverage standard operators
and give them framework to easily trade off processing
power with matching precision.

Distributed CEP

P1

P2

P3

P4

P5

EventEvents are
traveling on
edges
towards
engne.

Event
The definition of an event varies
based on context of CEP. However
some parameters are always the
same. Each event has defined time
of creation and producer.
Events should be as fine grained as
possible - to allow effective CEP.
That means thousands, even milions
of events per second are desirable.
This is not uncommon thing today
with advent of social networks, faster
networking hardware and computer
driven high frequency trading.

Filip Nguyen
xnguyen@fi.muni.cz

P1

P2 P4

P5

Suppose we know that P1 and P3
produce events at the same time with
high probability
Then we can add an engine between
them and match events.

Very simple query that matches
events that happenend in the time
window of 0.01 second.

select name(EA), name(EB)
where abs(time(EA) - time(EB))
 < 0.01s
 && EA!=EB

This query needs all the produced
events.

P1

P2 P4

P5

12.24

13.11

14.44

12.27

12.29
14.00

16.24
12.20

22.24

12.24

13.11

14.44
12.29

14.00

16.24
12.20

22.24

12.27

Here the second engine between P1 and
P3 will match events and is loaded with
less events than the former engine.
Unfortunatelly the event produced at
12.20 by P5 will not be matched. This is
the trade off situation in our solution.

How to deploy the engines dynamically?
Our solution is to turn each producer into
an engine. This way we gain additional
property - high availability.

We refer to this model as peer to peer model.
The events are distributed throughout the
formed network. Some of the events travel on
dedicated paths, some are broadcasted. This
behavior is based on the result of partitioning
algorithm.

A node is said to be a peer.

There is another result we present - partitioning algorithms.
We believe those algorithms may be extended and
generalized to be used in other fields for set partitioning and
analysis of data sets. These algorithms join several
Distributed algorithms, Statistics and Complex Event
Processing. We theorize, that the partitioning may be done
in a distributed fashion.
We also believe in adoption by users. We strive robust
architecture. Our solution is Open Source and we plan to
apply for Apache Incubation. We believe the science should
be done for greater good and sharing the code will improve
the implementation.
Lastly, our solution is not mutually exclusive with recent
research in the area of CEP. It will be possible to use
standard CEP engines on the peer nodes and thus
augmenting existing tools with PCEP.

?

Event
Coarse
Event

Peer Network

Partitioning Algorithm

Coarse Grained
Event

CEP Based and
Monte Carlo Algorithm

Basic Approach

Links
Github: https://github.com/nguyenfilip/pcep
LaSArIS: http://lasaris.fi.muni.cz/
LinkedIn: http://www.linkedin.com/pub/filip-nguyen/27/60/5b4
University: http://www.fi.muni.cz

P3

P3

